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The scaling properties of the free energy, specific heat, and mean spacing are 
calculated for classical Frenkel-Kontorova models at low temperature, in three 
regimes: near the integrable limit, the anti-integrable limit, and the sliding- 
pinned transition ("transition by breaking of analyticity"). In particular, the 
renormalization scheme given in previous work for ground states of Frenkel- 
Kontorova models is extended to nonzero-temperature Gibbs states, and the 
hierarchical melting phenomenon of Vallet, Schilling, and Aubry is put on a 
rigorous footing. 
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sliding-pinned transition. 

1. I N T R O D U C T I O N  

The F r e n k e l - K o n t o r o v a  mode l  a n d  its genera l iza t ions  are mode ls  for 
one -d imens iona l  i n c o m m e n s u r a t e  s t ruc tu res )  5~ They  consis t  of  a one-  
d imens iona l  a r ray  of  classical var iables  (x , , ) ,~z  wi th  m o m e n t a  p ,  a n d  
H a m i l t o n i a n  

n=Z , ~ z ~ m +  h(x , ,  x ,+  l) (1.1) 

Here, h: R 2 ~  R is a func t ion  (called the generating function) with  the 
following two propert ies :  

h(x, x')  = h(x + 1, x '  + 1 ) (1.2) 

hl2(x, x ')  < 0  (1.3) 
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where subscript i e { 1, 2} denotes the partial derivative with respect to the 
ith argument. 

The Frenkel-Kontorova model is the special case 

1 2 
h(x, x ' )  = ~ t(x' - x - a) 2 + ~ cos 2~zx (1.4) 

with parameters t, a, and 2. By choosing appropriate scales in time and 
energy, it is clear that the dependence on t and 2 is only through their ratio 

k = 2/t (1.4a) 

Also, m in (1.1) can be chosen to be 1. 
It will sometimes be convenient to write the Frenkel-Kontorova 

model in an alternative form. By expanding the square in (1.4), we can 
write (1.4) as 

1 2 2 
h(x, x ' )  = ~ t(x' - x )  2 - at(x'  - x)  + ~ ta + ~ cos 27rx (1.5) 

As the term Eta" serves only to shift the origin of energy, we may remove 
it (except when variations with respect to a or t are required). Denoting 

P =  - a t  (1.6) 

we can write Frenkel-Kontorova model in the form 

with 

h(x, x ' )=h , .~ (x ,  x ')  + P(x '  - x )  (1.7) 

I , 2 
h,. a(x, x ' )  = ~ t(x - x) 2 + ~ cos 2nx (1.8) 

I refer to P as the pressure because it is conjugate to the volume (length of 
the chain in this case). Other authors refer to it (after a sign change) as the 
chemical potential. It will be useful to add a term P ( x ' - x )  to every model 
(except at the anti-integrable limit, when P should be scaled by t). So we 
consider models with two parameters, one like k in (1.4a) and one like P 
or a. 

The goal of this paper is to understand the behavior of Frenkel- 
Kontorova models at low temperatures. Since they are one-dimensional 
systems with short-range interactions, there is always a unique Gibbs state 
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for temperature T > 0  (so no phase transitions at T > 0 ) ,  but in a sense 
there is a phase transition at T =  0 whose nature depends on which side of 
a certain fractal "curve" in the (k, P) plane the system is located. 

There are two important limits in the (k, P) plane. Models for which 
h depends only on ( x ' - x )  are called integrable, e.g., 2 = 0 in (1.4). Models 
for which h depends only on x are called anti-integrable, e.g., t = 0 in (1.4) 
[to include this case, condition (1.3) must be weakened to h12(x, x')<~ 0]. 
A renormalization operator can be defined for which both these limits are 
attracting, t13) The basin of attraction of the integrable limit is called the 
subcritical regime, and that for the anti-integrable limit is called the 
supercritical regime. In between is a critical set which separates the two 
basins. Near this critical set particularly interesting scaling relations will be 
exhibited. 

Aspects of this problem have already been studied. Aubry classified the 
minimum-energy states, ~5~ proving in particular that they have a well- 
defined mean spacing 2 

p = <x,,+ l - x , , >  (1.9) 

and proved basic properties of the T = 0 phase diagram, such as continuity 
ofp.  t3~ Sinai t2~ and Lazutkin and Terman (12) proved that the Gibbs states 
for T >  0 converge to a measure supported by the minimum-energy states 
of a definite mean spacing. The scaling of the T = 0 phase diagram about 
the critical set is described in ref. 13. Vallet, et aL ~9' 23.24) described aspects 
of the phase diagram in the supercritical regime, in particular, a hierarchy 
of Schottky anomalies, and gave an approximate renormalization scheme 
to explain this. 

Here, a complete picture is given for scaling properties for small T, 
at the integrable and anti-integrable limits, in the subcritical and super- 
critical regimes, at criticality and near criticality. Remarkable scaling laws 
are found for the free energy, specific heat capacity, and mean spacing. 
A rigorous renormalization scheme is presented and hierarchical melting 
deduced. 

We begin in Section 2 by recalling some basics of statistical mechanics. 
In Sections 3 and 4, respectively, the integrable and anti-integrable limits 
and their neighborhoods are discussed. The main novelty of the paper lies 
in Section 5, where a renormalization approach is developed which sheds 
much light on the transition regime. The paper concludes in Section 6 with 
a short discussion. 

2 Warning: In physics, the symbol p would normally represent a density, e.g., the reciprocal 
of the mean spacing; my usage here comes from dynamical systems, where the mean spacing 
is interpreted as a "rotation number." 

822/80/1-2-4 
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2. BASICS 

The procedure of statistical mechanics (e.g., ref. 6) is to compute 

z : =  lim N - I l o g Z N  (2.1) 
N ~ o o  

where Z N is the partition function 

ZN := ; exp[ - - P H u ( x ,  p) ]  dp(x,  p)  (2.2) 

where fl := 1/T (in energy units), HN is the Hamiltonian for a finite part of 
the system given by restricting the sum in (1.1) to n = 0 to N -  1, with some 
choice of boundary conditions, and the integral is taken over all phase 
space for the finite system, with Liouville measure p. Then the energy per 
site is given by 

e = --Oz/Ofl (2.3) 

and the specific heat at constant pressure P by 

C p = Oe/OT = f12 Oe/Ofl (2.4) 

Similarly, the mean spacing p is given by 

p = - f l - '  Oz/OP (2.5) 

The specific heat at constant p (which we shall denote by a subscript V for 
volume) is obtained by 

Cv = Cv - (Oe/OP)/(Op/OP) (2.5a) 

For the Frenkel-Kontorova models ( 1.1 ), we take the finite truncations 
to consist of a chain of N atoms with free ends. Configurations (Xo ..... XN) 
and (Xo + 1 ..... XN + 1 ) are regarded as equivalent when the integral (2.2) is 
carried out. 

The integral (2.2) decomposes into a product ZN, xZN, v of integrals 
over configuration and momentum space, leading to a decomposition 

z = z x  + Zv (2.5b) 

The momentum-space integral yields 

zv  = �89 log(2nm/fl)  (2.6) 
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The configuration-space integral 

N--1 
ZN.x=f ]--[ exp[-flh(x,,x,+l)] l'-I dx, (2.7) 

n = O  

can be treated in several ways. 
A standard way is to recognize (2.7) as approximately Tr L u, where L 

is the transfer operator 

= f dx exp[ -flh(x, x')] ~b(x) (2.8) (Lck)(x') 

Since L is a positive operator, it has a unique eigenvalue p of maximum 
modulus and it is real, positive, and simple. Hence 

Zx = log p (2.9) 

The largest eigenvalue has positive eigenvector ~b. Thus no generality is lost 
in writing it as 

~b(x) = exp[ -flS(x)] (2.10) 

and the eigenvalue equation becomes 

pexp[-f lS(x ' )]=f  dxexp{-fl[h(x,x')+ S(x)]} (2.10a) 

For fl large, the integral can be approximated by the saddle-point method: 

2n ],/2 
pexp[-flS(x')] ~-~exp{-fl[h(x,,,x')+S(x,,)]} flU'--'-~x,,)] (2.11) 

where the sum is over local minima x,,(x') of 

U(x) = h(x, x') + S(x) (2.12) 

all assumed to be nondegenerate with U"'(x)~fl~/2U"(x,,)3/2. If there is a 
unique global minimum x,,(x') and all other local minima are considerably 
higher, then for large fl the sum (2.11) reduces to one term, 

p~-exp{-fl[S(x,,)+h(xm, x')-S(x')]} flU-~,-,-,~x,.) (2.13) 

with x,,,(x') satisfying 

S'(x,~) + h l(Xm, X t )  = 0 (2.14) 
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Now (2.13) is supposed to hold for all x'; thus, differentiating it with 
respect to x' and using (2.14) gives 

0 ~- - ~ [ h 2 ( x , . ,  x ' )  - S'(x')] 

x e x p { - f l [ S ( x , , ) + h ( x m , x ' ) - S ( x ' ) ] }  flU'--'-~x,, (2.15) 

where variations resulting from U" are ignored as of higher order in fl-~/-'. 
Consequently, 

h2(x,,, x') - S'(x') = 0 (2.16) 

Combining (2.14) and (2.16) leads to 

S(Xm) + h(x,~, x') -- S(x') ~- const =: w (2.17) 

Thus 

/~ ~ exp(-f lw)  f l (U"(x ) )  (2.18) 

taking the average in some sense, and finally, 

1 2r~ 
~- - f lw  +~ log fl( g" (x ) )  (2.19) Zx 

This turns out not to be useful, however, partly because the meaning of 
(U" (x ) )  is not clear. Nonetheless, a variant of this method, namely a 
renormalization scheme for understanding the asymptotic behavior of a 
sequence of powers L q", will be used to great effect in Section 5. 

An alternative way to evaluate (2.7), which is used in Sections 3 and 
4, is to rewrite it as 

where 

Ztr x = f exp[ - f lWu(x) ]  1-I dx,, (2.20) 

N - - I  

WN(x)= ~ h(x,,, x,,+ l) (2.21) 
I ;=0 

It can be treated for large fl by the multidimensional saddle-point method, 
yielding 

ZN. x - ~ exp[ - f lWu(x) ]  (2r(fl) u/2 (det DEwu) -]/2 (2.22) 
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where the sum is taken over all local minima of WN (in some circumstances 
the lowest minimum may suffice). Now 

log det D2WN ~-- N(X + z) (2.23) 

(the Thouless formulat2~)), where X is the Lyapunov exponent of the corre- 
sponding orbit segment and 

= ( log[  -h l2 (x  , x ' ) ] )  (2.24) 

the average being taken along the sequence. Thus 

z x  ~- z ,  + �89 log(Zn/fl) - �89 ( Y )  + ( r ) )  (2.25) 

where 

z .  = lim N - t  log Z N . .  (2.26) 
N ~ o o  

with 

Z N . ,  = ~ exp[ --flWN(X) ] (2.27) 

and the averages in (2.25) are weighted over the minima in proportion to 
their contribution to ZN. , .  

3. THE INTEGRABLE REGIME 

3.1. Integrable Systems 

A Frenkel-Kontorova model (1.1) is said to be integrable if its zero- 
temperature equilibrium states are the uniformly spaced sequences 

x,, = n p  + O, O, p arbitrary (3.1) 

This is equivalent (see Appendix) to the generating function h having the 
special form 

h(x, x ' )  = F(x '  - x)  -- S (x ' )  + S(x )  (3.2) 

for some functions F and S with F" > 0 and S periodic of period 1. Since 
the generating function enters the partition function (2.2) only as a sum 
along sequences, the contribution of S in (3.2) telescopes and so we can 
ignore it [-mathematically, S ( x ' ) - S ( x )  is a eoboundary and h ( x , x ' )  is 
cohomologous to F(x '  -- x)].  
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Taking segments Xo, ..., x N with free ends and regarding configurations 
x0 ..... xN and x 0 + 1 ..... x~ + 1 as equivalent, we obtain 

Zx = log f exp[ --flF(~)] d~ (3.3) 

For the special case F(~)= �89 this can be integrated explicitly to 

1 2 n  
Z x = ~  log -ff (3.4) 

giving a configuration space contribution of �89 T to the energy e and hence 
of �89 to the specific heat Ce. Of course, momentum-space contributions of 
�89 and �89 from (2.6) also need adding to e and Ce, respectively. 

For general integrable systems, the integral (3.3) can be approximated 
at low temperature by the saddle-point method, yielding 

1 2n  
Zx = --flF(~) + ~ log ~ + O(f l - , f l )  

p r  t g )  

where ~ is the minimum of F. This gives specific heat C v =  �89 O(Tt/2). 
If an external pressure is applied, then 

h(x, x ' )  = F(x '  - x)  + P(x '  - x)  

and the minimizing ~ depends on P as follows: 

F'(~) = --P 

So 

1 1 2 n  
Z X = --~(F(~) -[- PC) '[-2 og ~ ---]- O(fl-i/2) 

For the special case F =  �89 we obtain 

(3.5) 

_ 1 t ip2  1 1 2n  z x =  + ~  o g ~ -  

(3.6) 

(3.7) 

(3.8) 

(3.9) 

and so the mean spacing is p = - f l - i  az/aP = - P ,  and the compressibility 
is tc = - a p / a P  = 1. 

For the general integrable system with pressure, (3.7) implies that 

a~/aP = - 1/F"(~) (3.9a) 
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Then using (3.8), the mean spacing comes out to be 

p = ~ -- F"(~) /2f l  + O(f1-3/2) 

Note that we obtain compressibility 

x = -OplOP = 1/V"(~) + O(T)  

and thermal expansion 

(3.10) 

(3.11) 

Op/OT= - �89 ~) + O( T '/2) (3.12) 

3.2. Systems Close to Integrable 

If h is close to integrable, e.g., 

h(x, x ' )  = F(x '  -- x )  + P(x '  -- x )  + 2V(x,  x ' )  (3.13) 

with 2 small, then KAM theory (e.g., ref. 1), translated into this context, 
shows that with large probability in the pressure P, the ground states have 
the form 

x ,  = X(np  + O) (3.14) 

for some irrational p and smooth function X, depending on P and 2. Then 
the partition function is dominated at low temperatures by the circle of 
ground states formed from (3.14) by letting 0 vary. 

Now define E(~) to be the mean energy per site for the minimum- 
energy states of mean spacing ~ with P fixed at zero. This was shown by 
Aubry c3) to be a strictly convex function of ~. At zero temperature, the 
effect of pressure P is to select the mean spacing ~ which minimizes 

w(~) = E(~) + PC (3.15) 

Then the leading-order contribution to the energy (1.1) is Nw(~). In fact, 
the deviation of the energy from this in a ground state can be shown to be 
just a coboundary (by the theory of dynamic programming; e.g., ref. 7). 

Next we have to estimate the integral in the partition function. For 
low temperature Che dominant contribution can be obtained by expanding 
the energy to second order. Since 0 is arbitrary, the second variation D 2 W  
of the energy is degenerate, but the range of integration is bounded in the 
0 direction (~ dO= 1), so it is enough to consider transverse variations. 
D 2 W  is positive definite with respect to transverse variations because (i) the 
ground state is a minimum-energy state with respect to variations fixing the 
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ends (and by ref. 16 this implies a nondegenerate minimum), and (ii) it is 
a nondegenerate minimum with respect to a change of mean spacing (by 
strict convexity of E). Rather than calculate the determinant of D 2 W  for 
transverse variations, we take a short cut, namely, we modify the boundary 
cofiditions so that variations in Xo and xu are in antiphase. As is standard 
in statistical mechanics, this may make a significant change to the partition 
function, but after taking the logarithm, dividing by N, and taking the limit 
as N goes to infinity, the change disappears. The determinant for variations 
with antiphase boundary conditions is easily computed to be 

det D 2 W  = 4 l-I [ -h l2(x , , ,  x ,+  l)] (3.16) 

adapting ref. 25 and using the fact that the determinant for in-phase 
boundary conditions is (essentially) zero (the only contribution comes 
from the coboundary mentioned above). Following the notation of (2.24), 
we write this as 

det D 2 W  = 4 exp Nr (3.17) 

Hence 

leading to 

Z/v, x "~ exp(-flNw) (2~/fl) N/2 (det Dzw,,)-1/2 

-- 4 exp( -- f lNw - �89 (2n/fl) N/2 (3.18) 

1 1 2zr 
z x ~- - f lw(~)  - ~  r + ~  log ~ (3.19) 

This gives specific heat 1/2 as before, but the pressure dependence is 
more interesting. First note from (3.15) that ~ is determined as a function 
of P by 

E'(~) = - P  (3.20) 

and hence 

O~/OP = -- I /E"(~)  

Using (3.20) and (3.21), we find that the mean spacing is 

~'(~) 
p = - 8 - '  Oz/aP = 

2flE"(~) 

(3.21) 

(3.22) 
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In particular, note that at low temperature, the compressibility is 

x = - O p / O P  = - ~ ' ( P ) =  1/E"(~)  (3.23) 

a result which makes eminent sense, as this is the zero-temperature result? 
More interestingly, note that the leading-order thermal expansion is given 
by 

Op/OT= - �89 (3.24) 

For an integrable system, it is easily shown that 

exp ~(~) = E"(~)  (3.25) 

- ! E ' t ; : ~  agreeing with (3.12). But (3.24) is the and so (3.24) reduces to 2 ~ , ,  
general near-integrable result. 

If the pressure P is in the set of small probability for which KAM 
theory does not apply, then strictly speaking this counts as being in the 
anti-integrable regime. Nonetheless, a simple treatment will be sketched 
here of the most important case, namely when the minimizing mean 
spacing is a low-order rational p/q. If T is sufficiently small, then the 
partition function is dominated by the minimizing periodic state of mean 
spacing p/q. Then, using (2.22), we obtain 

1 2 ~  1 
z x  = - f l w  +-~ log --~-- ~ (Z + r) (3.26) 

where w is the mean energy per site for the minimizing state, Z is its 
Lyapunov exponent, and r is given by (2.24). For the model (1.8), then 
r -- 0 and 

X ~ Cpq )L,q (3.27) 

for some c o n s t a n t  Cpq. (9) The approach of ref. 14 shows that 

1 p w--- ~ ( q -  a)2 + (.9().) (3.28) 

Then from (3.26), 

P - a  + 0 ( 2 )  I i 2re 1 
Z x ~ _ - f l  q + ~ og --fl- - -~ Cpq2 q (3.29) 

3 Incidentally, using ref. 8, it can easily be shown that E"(?.) has the dynamical systems inter- 
pretation of the reciprocal of the "torsion" of the invariant circle of rotation number ~ (see 
ref. 10 for a definition). 
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This leads via (2.3) and (2.4) to configuration-space contributions 

e~\q--l (P a~ +~(2)+lT (3.30) 

1 
Cp = ~ (3.31) 

and via (2.5) to 

p =p/q + 0(2) (3.32) 

More detailed analysis might be expected to reveal the opening up of a 
tongue of width of order ,~.q in which p is very close to p/q, for T <  ,~.q. 

A referee raised a question about connections with continuum system 

H[p, u] = j" �89 + �89 2 + V(u(x)) dx (3.33) 

whose statistical mechanics was studied, for example, in refs. 18 and 22. 
This system can be obtained from the Frenkel-Kontorova model 

H = E 1  2 ~_p,,/m + �89 -- u,) 2 + ;t V(un) (3.34) 

in the scaling limit t = m = 1/2, 2---, 0, on putting x = n2. It gives a good 
way of studying the Frenkel-Kontorova model for small ,l when the mini- 
mizing mean spacing is an integer or nearly so. Probably the neighborhood 
of any rational p/q could be treated by first deriving a suitable single- 
resonance model (e.g., as in ref. 14) and then using the continuum 
approximation for ~.q small enough, but I have not pursued this. 

4. THE ANTI - INTEGRABLE REGIME 

For the presentation of this section, we specialize to models of the 
form (1.4), but allowing the potential to be replaced by an arbitrary func- 
tion V with one minimum per period. The parameter a is used instead of 
the pressure P = - a t .  Near the anti-integrable limit ( t = 0 ) ,  we scale 2 
to 1. 

4.1. The Anti- lntegrable Limit 

At the anti-integrable limit 

h(x, x ' )  = V(x) (4.1) 
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Hence 

ZN, x=fexp[ - - f l~V(x , , ) ] l - - [dx , ,  (4.2) 

This is dominated by the minimizing states, which are simply given by 
choosing x.  =xmi. +m. ,  for any sequence of integers m,,, where x ~ .  is 
the minimum of V in [0,1), say. Each anti-integrable minimizing state 
contributes 

2zr ~N/2 (4.3) 
pv~.] 

to Zu. x, where V', = V"(x~,). A problem is that there are infinitely many 
minimizing states even for N fixed. If we restrict (X,),=O...N to a box of 
size Nv, some v, then there are (Nv) N of them. This leads to 

( 2n ~ N/2 
Zn.x  ~- \ - ~ ]  (Nv) N (4.4) 

As for an ideal gas, we regard the x ,  as indistinguishable, which divides out 
the N u term, and we obtain 

I 1 2 ~  og ~ , ~  + log v (4.4) Z x ~  - ~ 

This leads to configuration-space contributions e=�89 and C p = ~  (to 
which the usual momentum-space contributions should be added as in 
Section 3). Equation (2.5) cannot be used to obtain p, because t = 0 ,  and 
since the x,, are indistinguishable, the concept of mean spacing 
(x,, + 1 - x , )  does not make much sense anyway. 

4.2. Near the Anti-lntegrable Limit 

Near the anti-integrable limit, we take 

h(x, x') = V(x) + �89 x - a )  2 (4.6) 

More general forms of perturbation to the anti-integrable limit could be 
considered, but this one suffices to give the ideas. 

Then each of the minimizing states (x,) ,~z with 

t Ix,,+1--2x,,+ x ._ , l  ~ V~, (4.7) 

has a unique continuation (2.), 14) with 

2, ~- x,,--t(x,,+~-- 2x,, + x,,_l)/V" (4.8) 
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The energy of  a segment 0 ..... N increases by 

N - - I  

E �89 -x'-a)2 ( 4 . 9 )  

n = O  

to first order in t. 
Let us assume for the rest of  this section that  the temperature  is low 

enough that  

t T a  (V',',,) 2 and T,~ V m a  x - -  V m i  n (4.10) 

where Vmax and Vmi, denote the max imum and min imum values of  V. 
Then ZN, X is dominated  by these local minima,  and we can use formula 
(2.25), with 2' = log V;',,, r = 0, and 

ZN. .  ~-exp(-flNVmin) F. exp - p t  ~ ( ~ , , - a )  2 (4.11) 
(ei.) n = 0 

where the sum is over sequences of  integers 6,=m, ,+~-m, , .  It  is not  
necessary to restrict ourselves to sequences satisfying condit ion (4.7), 
because by (4.10) the difference is exponentially small. 

Equat ion (4.11) can be rewritten as 

Zu. , ~- e-tmv~i"O(flt, a) N (4.12) 

where 

So 

O(r,  a) = ~ e -"a-~ (4.13) 
~ ; ~ Z  

z ,  ~ --flVmi, + Iog O(flt, a) (4.14) 

The function O is a famous one which appears  in the analysis of  Riemann's  
zeta function (e.g., ref. I 1). It  has the following behavior,  as can be easily 
proved. For  z large 

O(r,  a) ~ 2 cosh �89 e-~2/2e -~/8 (4.15) 

where 

1 e = ~ - { a }  (4.16) 

and {a} is the distance from a to the nearest integer [ a ] .  When re ~> 1 this 
reduces to 

O(r, a) ~ e-~r (4.17) 
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For r small, 

O ( r , a ) ~ ( ~ )  ~/2 (4.18) 

The term flVmi n in (4.14) is not important, as it does not contribute to 
the specific heat nor to the mean spacing, so we will leave it out. The 
second term in (4.14) contributes 

I 
- l i l t { a } 2  if flte>> l 

fit 1 2 (2cosh-~ f l t e )  if flt>>l 8 -~flte +log  1 

l l 2n 
log~-~ if f l t ~ l  

1 
and e < ~  (4.19) 

The symbol -< denotes "less than or of the same order as." Hence we 
obtain a contribution to the specific heat of 

f i  if T ~  te (4.20a) 
2 sech 2 x, where x = �89 if T,~ t and T>- te (4.20b) 

if T>> t (4.20c) 

To this should be added contributions of �89 from the term �89 log 2n/fl in 
(2.25) and �89 from the momentum integral (2.6). The enhanced specific heat 
(4.20b) for T ~ t e ,  e small, can be seen as a Schottky anomaly, c'-3"24~ 
Calculation to higher order in t would be expected to reveal further 
Schottky anomalies. Instead of doing this, I will use a renormalization 
procedure in Section 5 to deduce an infinite sequence of Schottky anomalies 
as the temperature is reduced. This is a rigorous version of the renormaliza- 
tion of refs. 23 and 24, which used two approximations: (i) approximation 
of the Frenkel-Kontorova model by a spin model, (ii) neglect of nonrenor- 
malizable spin configurations. 

The existence of a regime (4.20) where the specific heat is 3/2, viz. 
T>> t, is a new phenomenon, to my knowledge, though not particularly 
surprising. It can be understood heuristically on the basis of the growth of 
the number of anti-integrable equilibrium states with respect to energy. 

The mean spacing can also be found from (4.14) and the analog of 
(2.5) for parameter a: 

10z  
(4.21) 

p = a - fit Oa 
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[a]  if T ~ t e  

M 1[  ( ~ ) ]  ' M 1 p ~  + ~  l + t a n h f l t  a - M - -  if a ~  + ~  

if T>>t 

and T ~ t  

(4.22) 

5. THE T R A N S I T I O N  REGIME 

At T =  0, there is a qualitative transition in the ground state across a 
certain fractal "curve" in the (k, P) plane. Below the curve, there is a circle 
of ground states, so they have a phason. Above the curve, the ground state 
has phonon gap. Many features of the transition can be understood by 
renormalization.(~3) I recall the scheme rapidly. It is easiest to describe if we 
assume that we know a ground state (x,),,~z. 

Suppose we know that the mean spacing p of the ground state occurs 
between the integers K and K + 1. Then if the bond from x,  to x ,  + ~ crosses 
K +  1 maxima of the potential, label it by o, and if it crosses K maxima, 
label it by r. Since the ground state is rotationally ordered (i.e., x ,  rood 7/ 
are in the same order on the circle as np mod Z), these are the only two 
possibilities. By defining 

o(x, x ' )=h(x ,  x' + K) 
(5.1) 

r(x, x') =h(x,  x' + K + 1) 

and subtracting appropriate integers from the x , ,  the ground state reduces 
to a ground state of a model with two types of interaction (o and z), for 
which the x,  remain in an interval about 0, and x,  ~< 0 < x,,+, for each 
v-bond, x , + ~ <  0 < x ,  for each r-bond. By rotational order, either every 
o-bond is surrounded by r-bonds or every r-bond is surrounded by o-bonds. 
Let us suppose the first case. Then we can eliminate the site at the fight hand 
end of each o-bond by defining 

O(x, x') = rain (o(x, z) + r(z, x') 
(5.2) 

~(x, x ')  = r(x, x') 

to obtain a new chain with two interactions (~ and ~), and an equivalent 
ground state. In the second case, eliminate the sites at the fight-hand end 
of every r-bond in the same way. 

It is convenient to rescale the configuration space and the scale of 
energy 

~(x, x') = J~(x/~, x'/~) 
(5.3) 

~(x, x')  = J~(x/o~, x'/oO 
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by numbers J and 0q in order to try to make the new pair (6, ~) look as 
much like (o, r) as possible, by enforcing some normalization conditions 
[in fact, it is also useful to perform some additional changes to (6, f) which 
do not change the ground states]. 

The transformation R: (o, 3)~-, (6, f) is called "renormalization." The 
remarkable numerical observation is that R possesses a hyperbolic 
invariant set C of the form {(o*, r * ) : p  Diophantine irrational e(0,  1)}, 
with two-dimensional unstable manifolds. (~7) 4 The parameter p labels the 
mean spacing of the ground state. The two unstable directions correspond 
to (i) the sliding-pinned transition and (ii) change of pressure (which 
changes the mean spacing of the ground state). We will denote dis- 
placements in these two directions by z/k and AP, respectively. At the 
"golden point" where p = y - i ,  y = �89 + x/~), which is a fixed point 5 of 
renormalization in C, the numbers J and 0~ are J -4 .339143904 and 
0t = - 1.4148360, and the expansions in the two directions are 6 ~ 1.6279500 
and q = - J/y "-, - 2.6817384, respectively. (~3) 

An analogous renormalization R' can easily be defined for nonzero 
temperature, and this is the main novelty of this paper. Instead of mini- 
mizing the energy with respect to certain sites, we integrate out certain sites 
in the partition function. Thus the analog of (5.2) is 

/. 

6(x, x') = -- Tlog J dz e-(O(X,  Z) + r(z, x') )/T 

~(x, x') = r (x ,  x') 

(5.4) 

and the renormalization R' is defined by composing (5.4) with (5.3). The 
effect of the scale change J in (5.3) is to increase the temperature by a 
factor J. 

To unify the T =  0 and T >  0 cases, we note that: (i) if o, r, and T 
are multiplied by the same positive number 2, then ~ in (5.4) is simply 
multiplied by 2, and (ii) (5.2) is the T-~ 0 limit of (5.4), because 

x(x ,  x ' )  := 022(x, z) + rl~(z, x ' )  (5.4a) 

is positive at the minima. 

4 Strictly speaking, the scheme described in ref. 17 does not apply directly here. The scheme 
of ref. 17 searches for a minimum-energy stale of given mean spacing, whereas here we want 
to find the ground state, whose mean spacing is not necessarily known in advance. However, 
the modifications required are simple and lead to the above conclusions. 
Actually it is a period-2 cycle of  R, but a symmetry (interchange of o and r) can be used 
to reduce it to a fixed point. 
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Hence we can think of the renormalization R' as acting in the subset 
with T>~ 0 of the projective space M of equivalence classes of triples 
(u, z, T) under the equivalence relation (o, z, T) ~ (2o, 2~, 2T), for all 2 > 0. 
It has the invariant set C on the boundary T =  0. The only effect of the 
enlargement of the space to include T >  0 is to add one further unstable 
direction, with expansion rate J, into T >  0. 

Let us describe some of the consequences of the existence of the hyper- 
bolic invariant set C. It is simplest to describe in the neighborhood of the 
golden point, because this is a fixed point of renormalization, whereas the 
general orbit on C is aperiodic. The renormalization picture implies that 
when we integrate over the sites to be eliminated, near the golden point, 
the partition function ZFo,. x for a segment of length F,,, (the mth Fibonacci 
number) satisfies 

where x denotes the geometric mean of the values of (5.4a) over the elimi- 
nated sites. The way x scales with m is subtle, being related to the scaling 
for the phonon gap, (~3) but it does not depend on fl and so is irrelevant for 
the computation of the specific heat, so we will suppress its dependence on 
AP and Ak for the moment. It follows that zx(f l ,  AP, Ak)  scales like 

Zx(fl, AP, A k ) ~ ) , - t z x ( ~ , r l A P , ~ A k ) - 7  - |  log a + (1 -)~-1) log ( 2 ~ )  l/: 

because F,,, ~ ~,F,,_ l. By (2.3) we obtain 

~( T, ,~e, Ak ) ~ I ~( jT ,  

(5.6) 

~l AP, fi Ak) (5.7) 

where 

= -Oz~lO#-  �89 (5.8) 

and so by (2.4) the contribution to the specific heat from ~ scales like 

Cp(T, AP, Ak) ~ y -~Cp(JT ,  r 1AP, 5 Ak)  

In particular, this says that at Ap = Ak = 0, 

Cp(T) -,. T l~ ~,/log Jc(log T) 

(5.9) 

(5.10) 
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Rl-I 

Fig. 1. Sketch of the action of renormalization R' on the space M. showing three invariant 
sets lying in the surface T = 0, represented by points, and a surface S around which a Schottky 
anomaly occurs, plus one of its preimages. 

where c is a function of period log J. Of course, one has to add to this the 
contribution �89 from the �89 T in (5.8) and the �89 from the momentum integral 
(2.6), but since log y/log J -~ 0.32787 < 1, (5.10) is the dominant term at low 
temperature. 

For the scaling of p, we first argue that because of the procedure at the 
beginning of this section of subtracting integers from the x , ,  the formula 
(2.5) should be interpreted as giving the deviation Ap of the mean spacing 
from that corresponding to the reference ground state. Then from (5.6), 
ignoring (possibly incorrectly) the dependence of K on AP, we obtain 

Ap(T, AP, Ak) ~ _ y - 2  Ap(JT, q AP, 6 Ak) (5.11) 

In particular, taking the limit T---, 0 leads to 

Ap ~ AP l~ F:og I.I (5.12) 

The exponent is 0.975628. This agrees with the T =  0 result of ref. 13. 
The renormalization scheme R' is not limited to the transition regime. 

There is a set of integrable systems which is invariant under renormaliza- 
tion and set of anti-integrable systems which is invariant under renor- 
malization. I believe that these connect up as indicated in Fig. 1. Hence 
renormalization can say things about the intermediate regimes, too. 

In particular, the renormalization scheme provides a rigorous founda- 
tion for the phenomenon of hierarchical melting of incommensurate struc- 
tures in the pinned regime, studied in refs. 23, 24, and 19. In Section 4 we 
found one Schottky anomaly at around T = ( ! -  2 {a})t.  Generalizing to the 
function space M, we expect a Schottky anomaly around a codimension-I 
surface S as indicated in Fig. 1. By inverse renormalizing, we deduce an 
infinite sequence of Schottky anomalies around the surface (R ' ) -kS ,  
k = 0 ,  1,2 ..... 

822/80/I-2-5 
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6. D ISCUSSION 

Low-temperature scaling laws have been derived for the free energy, 
specific heat, and mean spacing in classical Frenkel-Kontorova models, in 
the integrable, anti-integrable, and transition regions of parameter space. 
One of the interesting discoveries is of a regime t ~ T,~ 1 in which the 
specific heat is enhanced from 1 to 3/2. Another interesting result is the 
extension of the renormalization scheme of ref. 13 to nonzero temperature 
and the resulting nontrivial scaling laws like (5.10) near the sliding-pinned 
transition and associated results like hierarchical melting in the pinned 
regime. 

One natural question is where the effects of "discrete breathers" show 
up; these are self-localized periodic solutions whose existence is proved in 
ref. 15. Presumably they affect the time correlations. 

A next step could be to extend these results to quantum mechanical 
Frenkel-Kontorova models for small Planck constant. For example, 
suppression of the phonons with frequency 09 such that ho9 ~> T is to be 
expected. 

APPENDIX  

Theorem. A Frenkel-Kontorova model is integrable iffits generating 
function has the form 

h(x,  x ' )  = F(x '  - x )  - S ( x ' )  + S ( x )  (A.1) 

for some functions F and S with F" > 0 and S of period 1. 

Proof. If h has this form, then its equilibrium states are the solutions 
of 

F ' ( x . - x . _ 1 ) - S ' ( x . ) - F ' ( x . +  l - x . ) + S ' ( x . ) = O  (A.2) 

so x , + ~ - x ,  = const, since F'  is monotone. So the equilibrium states are 
the sequences 

x ,=np+O (A.3) 

which we took as our definition of integrability in Section 3. 
Conversely, suppose the equilibrium states are the sequences (A.3) 

with O and p arbitrary. Then 

h2(O-p, O) + h~(O, O + p) = 0  (A.4) 
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Differentiating with respect to p, we obtain 

h~2(O- p, O)=h,2(O, O + p) (A.5) 

If p is irrational, then density of the orbit of rotation by p and continuity 
of ht2 imply that h~2(O, O+p) is independent of 0. Since the irrationals are 
dense in the reals, continuity implies the same for rational p. Hence 

hx2(O, O+ p)=f(p)  (A.6) 

a function of p only. 
Now integrate hi2 over the triangle with vertices (x, x'), (x, x), (x', x') 

in two ways to obtain 

x '  - -  x 

Io ( x ' - - x - - p ) f ( p )  dp =h(x', x') -h (x ,  x ' ) - s (x ' )  +s(x) (A.7) 

where 

Let 

s(x) = h~(y, y) dy (A.8) 

S(x) = s(x) - s( 1 )x 

Then S is periodic of period 1. Now 

dh(x', x')/dx' =hl(x', x') + h2(x', x') = 0  

[compare the case p = 0  of (A.4)]. So 

h(x', x') = K, const 

Let 

F ( u ) = K -  ( u - p ) f ( p ) d p - s ( 1 ) u  

(A.9) 

(A.IO) 

(A.11) 

(A.12) 

By differentiating twice, F " ( u ) = - f ( u ) > 0 .  Furthermore, rearranging 
(A.7) yields 

h(x, x') = F(x' - x) - S(x') + S(x) (A.13) 



66 MacKay 

A C K N O W L E D G M E N T S  

I a m  gra teful  to  Serge A u b r y  for d iscuss ions  a b o u t  his paper s  on  this 

topic.  This  w o r k  was s u p p o r t e d  by the  Nuff ie ld  F o u n d a t i o n ,  the  Bri t ish 

Counc i l  Al l iance  scheme,  an  E C  n e t w o r k  on  " N o n l i n e a r  A p p r o a c h  to 

C o h e r e n t  and  F l u c t u a t i n g  P h e n o m e n a  in C o n d e n s e d  M a t t e r  and  Op t i ca l  

Phys ics ,"  and  the  U .K.  Science and  Eng inee r ing  Resea rch  Counci l .  T h e  

bu lk  was  c o m p l e t e d  du r ing  a visi t  to the Ins t i tu t  des H a u t e s  E tudes  Scien-  

t i f iques in Apr i l  1994, which  I t h a n k  for its hospi ta l i ty .  

REFERENCES 

1. V. I. Arnol'd, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1978, 
1989). 

2. S. Aubry, A unified approach to the interpretation of displacive and order-disorder 
systems I: Thermodynamical aspect, J. Chem. Phys. 62:3217-3229 (1975). 

3. S. Aubry, The devil's staircase transformation in incommensurate lattices, in The Riemam7 
Problem, Complete Integrability and Arithmetic Applications, D. Chudnovsky and 
G. Chudnovsky, eds. (Springer, Berlin, 1982), pp. 221-245. 

4. S. Aubry, and G. Abramovici, Chaotic trajectories in the standard map: The concept of 
anti-integrability, Physica D 43:199-219 (1990). 

5. S. Aubry and P. Y. Le Dacron, The discrete Frenkel-Kontorova model and its extensions 
I: exact results for the ground state, Physica D 8:381-422 (1983). 

6. R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics (Wiley, New York, 
1975). 

7. D. A. Carlson, A. B. Haurie, and Leizarowitz, Infinite Horizon Optimal Control (Springer, 
Berlin, 1991 ). 

8. Q. Chen, Area as a devil's staircase in twist maps, Phys. Lett. A. 123:444-450 (1987). 
9. J. M. Greene, A method for computing the stochastic transition, J. Math. Phys. 

20:1183-1201 (1979). 
10. M. R. Herman, Dynamics connected with indefinite normal torsion, Preprint Ecole 

Polytechnique (Oct 1990). 
11. A. Karatsuba and S. M. Voronin, Riemann's Zeta Function (de Gruyter, 1992). 
12. V. F. Lazutkin and D. Ya. Terman, Percival variational principle for invariant measures 

and commensurate-incommensurate phase transitions in one-dimensional chains, Convnun. 
Math. Phys. 94:511-522 (1984). 

13. R. S. MacKay, Scaling exponents at the transition by breaking of analyticity for incom- 
mensurate structures, Physica D 50:71-79 (1991). 

14. R. S. MacKay Greene's residue criterion, NonlineariO, 5:161-187 (1992). 
15. R. S. MacKay and S. Aubry, Existence of breathers for time-reversible or Hamiltonian 

networks of weakly coupled oscillators, Nonlinearity 7:1623-1643 (1994). 
16. R. S. MacKay and I. C. Percival, Converse KAM theory: Theory and practice, Commun. 

Math. Phys. 98:469-512 (1985). 
17. R. S. MacKay and J. Stark, Locally most robust circles and boundary circles for area- 

preserving maps, Nonlinearity 5:867-888 (1982). 
18. Y. Okwamoto, H. Takayama, and H. Shiba, Incommensurate-commensurate crossover in 

generalized one-dimensional Ginzburg-Landau fields, J. Phys. Soe. Japan 46:1420-1427 
( 1979 ). 



FrenkeI-Kontorova Models 67 

19. R. Schilling and S. Aubry, The static structure factor of one-dimensional non-analytic 
incommensurate structures, J. Phys. C 20:4881-4889 (1987). 

20. Ya. G. Sinai, Commensurate-incommensurate phase transitions in one-dimensional 
chains, J. Stat. Phys. 29:401-425 (1982). 

21. D. J. Thouless, A relation between the density of states and range of localization for one- 
dimensional random systems, J. Phys. C 5:77-81 (1972). 

22. L. A. Turkevich and S. Doniach, Ann. Phys. 139:343-418 (t982). 
23. F. Vallet, R. Schilling, and S. Aubry, Hierarchical low-temperature behaviour of one- 

dimensional incommensurate structures, Europhys. Left 2:815-822 (1986). 
24. F. Vallet, R. SchilLing, and S. Aubry, Low-temperature excitations, specific heat and 

hierarchical melting of a one-dimensional incommensurate structure, J. Phys. C 21: 
67-105 (1988). 

25. R. S. MacKay and J. D. Meiss, Linear stability of periodic orbits in Lagrangian systems, 
Phys. Lett. A 98:92-94 (1983). 


